

الجامعة الاردنية

Form:	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963 05/12/2022
	Number and Date of Revision or Modification	
Course Syllabus	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	09

1.	Course Title	Complex Analysis				
2.	Course Number	0331412				
2	Credit Hours (Theory, Practical)	3				
5.	Contact Hours (Theory, Practical)	3				
4.	Prerequisites/ Corequisites	0331212				
5.	Program Title	B.Sc.				
6.	Program Code					
7.	School/ Center	Science				
8.	Department	Mathematics				
9.	Course Level	Bsc				
10.	Year of Study and Semester (s)	Second or third				
11.	Other Department(s) Involved in Teaching					
	the Course					
12.	Main Learning Language	English				
13.	Learning Types	■Face to face learning □Blended □Fully online				
14.	Online Platforms(s)■Moodle■Microsoft Teams					
15.	Issuing Date	28-10-2024				
16.	Revision Date	29-10-2024				

17. Course Coordinator:

Name: Saja Hayajneh	Contact hours:(Su, Tue, Thu)11:30-12:30
Office number:	Phone number: (N/A)
Email: s.hayajneh@ju.edu.jo	

الجامعة الاردنية

18. Other Instructors:

ime:	
fice number:	
one number:	
nail:	
intact hours:	
ime:	
fice number:	
one number:	
nail:	
ntact hours:	

19. Course Description:

The structure of complex numbers (modulus, conjugate, polar form, roots, regions). Complex valued functions. (examples, limits, continuity). The derivative of a complex valued function. Formulas for differentiation. Cauchy - Riemann equations. Analytic functions (definition and basic properties). Harmonic functions (definition and basic properties). Elementary complex valued functions (exponential, trigonometric, hyperbolic, and logarithmic functions: their definitions and basic properties and inverse functions). Branches of logarithmic functions. Contours and contour integration. The Cauchy-Goursat theorem. Simply and multiply connected regions. The Cauchy integral formula. Morera's Theorem. Maximum modulus principle. Entire functions and Liouville's theorem. The fundamental theorem of algebra. Sequences and series of complex numbers (limits, convergence) Taylor series Laurent series. Absolute and uniform convergence of power series. Integration and differentiation of power series. Series representations of analytic functions on regions. Residues and Residue theorem. Poles. Residues at poles. Computations of residues. Improper integrals

الجامعة الاردنية

20. Program Student Outcomes (SO's):

(To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)

- Identify, formulate, and solve broadly-defined technical or scientific problems by applying knowledge of Mathematics and Science and/or technical topics to areas relevant to the discipline
- 7. Utilize research methods, critical and creative thinking skills to assess and analyze information) to solve problems properly, then draw valid reasoning and logical conclusions leading to true consequences.

21. Course Intended Learning Outcomes (CLO's):

(Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

- 1. Manipulate and calculate with complex numbers, complex functions (polynomials, rational functions, exponential and trigonometric functions) and multi-valued functions (argument, logarithm and square root).
- 2. Identify subsets of the complex plane and their geometric and topological properties (open, closed, connected, bounded, convex, star-shaped etc).
- **3.** Determine if a sequence of complex numbers is convergent, compute the limit of a given sequence and apply the Cauchy criterion.
- **4.** Define the limit of a complex function at a point and apply properties of limits. Compute the limit of a complex function at a point and determine whether a given complex function is continuous.
- 5. Define the derivative of a complex function, state and prove properties of the derivative and compute the derivative of a given complex function. Derive the Cauchy-Riemann equations for a complex differentiable function and identify whether a function is complex differentiable at a point.
- **6.** Determine if an infinite series of complex numbers is convergent. Describe the convergence properties of a complex power series, derive formulae for and compute the radius of convergence.
- 7. Identify and construct examples of paths satisfying prescribed properties. Evaluate complex path integrals and state and prove properties of such integrals. Define the index function for a path, describe its properties and evaluate winding numbers.
- 8. State and prove versions of Cauchy's theorem and its consequences including Cauchy's integral formula, the power series representation for analytic functions, Liouville's theorem and the Fundamental Theorem of Algebra.

- **9.** Find Taylor and Laurent series for a complex function, compute residues and apply the residue theorem to evaluate integrals
- **10.** Use complex analysis to solve various problems in differential equations and other branches of mathematics.

Course CLOs	The learning levels to be achieved									
Course CLOS	Remembering	Understanding	Applying	Analysing	evaluating	Creating				
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes

of the program:

Program SO's	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)	SO (6)	SO (7)	SO (8)
Course CLO's								(-)
CLO (1)								
CLO (2)								
CLO (3)								
CLO (4)								
CLO (5)								
CLO (6)								
CLO (7)								
CLO (8)								
CLO (9)								
CLO (10)								

23. Topic Outline and Schedule:

Week	Lecture	Topic	CLO/s Linked to the Topic	Learning Types Face to Face (FF) Blended (BL) Fully Online (FO)	Platform Used	Synchronous (S) Asynchronous (A)	Evaluation Methods	Learning Resources
	1.1	Properties of complex number, Modulus, complex conjugate of a complex number.	1	FF	Teams	S		Text Book
1	1.2	Roots of unity and nth roots of a complex number.	1	FF	Teams	S		Text Book
	1.3	Solving Problems. Topological properties of subsets of complex numbers as: interior, exterior and boundary points, open and closed	2	FF	Teams	S		Text Book

		domains regions and					
		accumulation points					
		noint at ∞					
		Complex functions					
	21	domain of definitions	4	FF	Teams	S	Text
		mannings: examples	•		reams	Ũ	Book
		Limit continuity and					
	2.2	differentially of a complex	4	FF	Teams	S	Text
		functions.	-				Book
2		Analyticity at a point,					
		analyticity in a domain,					
		and Cauchy - Riemann	_		_	_	Text
	2.3	, equations .Harmonic	5	FF	Teams	S	Book
		function, harmonic					
		conjugate, and analyticity.					
		Elementary functions:					
	3.1	Basic properties of					
		exponential function,					Tout
		Basic properties of	5	FF	Teams	S	Peak
		Trigonometric functions,					BOOK
		Basic properties of					
		hyperbolic functions.					
3	3.2	Logarithmic function,					
		general branch, principal					Text
		branch, analyticity	5	FF	Teams	S	Book
		of a branch, choosing a					DOOK
		suitable branch.					
	3.3	Properties of general					Text
		exponential function, and	5	FF	Teams	S	Book
		inverse function.					
		Complex integral. Cantour					
		integral, antiderivative,					
		independence of path,					
	4 1	Cauchy - Goarsat theorem	7		Taama	c	Text
	4.1	domain and for multiply	/	FF	Teams	5	Book
		connected domain					
4		deformation of contours					
	<u> </u>	Cauchy Integral formula					
		derivative of analytic					Text
	4.2	function. Lieouville and	8	FF	Teams	S	Book
		Morera Theorems.					

الجامعة الاردنية

							-	
	4.3	Maximum modulus principles for analytic function and for harmonic function.	8	FF	Teams	S		Text Book
_	5.1	Series of complex numbers Taylor series, Laurent series.	9	FF	Teams	S		Text Book
5	5.2	Singular and Taylor parts of expansion of a complex function, types of singular points.	9	FF	Teams	S		Text Book
	6.1	Residue theorem: Residue of a function at a singularity, residue theorem.	9	FF	Teams	S		Text Book
6	6.2	Applications: evaluating integral of trigonometric functions.	10	FF	Teams	S		Text Book
	6.3	Evaluating improper real integral.	10	FF	Teams	S		Text Book

24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLO/s Linked to the Evaluation activity	Period (Week)	Platform
Midterm exam	30		1+2+3+4+5	8	On campus
Second exam	20		6+7+8	11	On campus
Final	50		1+2+3+4+5+ 6+7+8+9+10	Final exams period	On campus

25. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific

software/platform...etc.):

-Data show, Microsoft Teams account.

26. Course Policies:

- 1. Attendance is absolutely essential to succeed in this course. You are expected to attend every class; please notify your instructor if you know you are going to be absent. All exams must be taken at the scheduled time. Exceptions will be made only in extreme circumstances, by prior arrangement with the instructor.
- 2. If a student is absent for more than 10% of lectures without an excuse of sickness or due to other insurmountable difficulty, then he/she shall be barred from the final examination also he/she will get a failing grade in this course. Medical certificates shall be given to the University Physician to be authorized by him. They should be presented to the Dean of the Faculty within two weeks of the student's ceasing to attend classes.
- **3.** Test papers shall be returned to students after correction. His/her mark is considered final after a lapse of one week following their return.
- **4.** Cheating is prohibited. The University of Jordan regulations on cheating will be applied to any student who cheats in exams or on homeworks.

27. References:

A- Required book (s), assigned reading and audio-visuals:

Complex variables and applications J. Brown and R. Churchill., 6th Edition, Mc Grow-Hill, Inc.

B- Recommended books, materials, and media:

- **1.** Fundamentals of complex analysis. E Saff, and A. Snider.
- 2. Complex Variables with Applications, By A. D. Wunsch
- **3.** Complex Analysis. By S. Lang.

28. Additional information:

Name of the Instructor or the Course Coordinator:	Signature:	Date:
Dr. Saja Hayajneh		29-10-2024
Name of the Head of Quality Assurance Committee/ Department:	Signature:	Date:
Prof. Manal Ghanem		
Name of the Head of Department:	Signature:	Date:
Prof. Baha Alzalg.		
Name of the Head of Quality Assurance Committee/ School of Science:	Signature:	Date:
Prof. Emad A. Abuosba		
Name of the Dean or the Director:	Signature:	Date:
Prof. Mahmoud I. Jaghoub		